Biological Sciences Paper

The Plant Transcriptome and Its Response to Environmental Stimuli

Title The Plant Transcriptome and Its Response to Environmental Stimuli

The relationship between an organisms genome, developmental stage, and environment is complex. The aim of the research presented herein was to provide experimental evidence to contribute to the annotation of the P. trichocarpa genome and to test two major hypotheses addressing the interaction between drought and time of day in A. thaliana and in two hybrid Populus clones. In order to generate data to address these aims, three separate experiments were undertaken. First, all members of the R2R3-MYB family of transcription factors in the P. trichocarpa genome were characterised by phylogenetic analysis and their transcript accumulation patterns across a range of tissues and organs were assessed using whole genome poplar microarrays. Results of this analysis indicated that expansion and diversification of the R2R3-MYB family may have contributed to phenotypic innovation in the Populus lineage. Second, drought-responsive transcriptome adjustments of two hybrid poplar clones, DN34 P. deltoides X P. nigra) and NM6 P. nigra X P. maxiomowiczii) were assessed for time-of-day and genotype dependent patterns. For each genotype, each of four time points was characterised by discrete sets of drought-responsive genes. Furthermore, while a number of genes were identified that were responsive to drought in both genotypes, a much larger number of genotype-dependent, drought-responsive transcriptome changes were detected. Finally, the drought-responsive transcriptome adjustments A. thaliana plants were assessed for time-of-day dependent accumulation patterns. Results of this analysis indicate that time-of-day-dependent differences in the drought response were manifest as changes of different magnitudes for a conserved set of genes across the four time points measured. These results emphasise the complex interplay of a plants genome, developmental stage, and environment in shaping the observed transcriptome.

Category Biology
Subject Biology, Botany,
FileType PDF
Pages 172
Price US$48.00
Language English
Buy Now

FAQ How to get this paper's electronic documents?
1, Click the "Buy Now" button to complete the online payment
2, Download the paper's electronic document from the successful payment return page/Or the system will send this paper's electronic document to your E-Mail within 24 hours


Comments are currently closed.